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The system under consideration is a classical homopolymeric chain under an
arbitrary external field, and in the grand canonical ensemble of its monomeric
units. The ideal case of only symmetric next neighbor interactions is first
analyzed in the relative density format. Arbitrary monomer-monomer interac-
tions are introduced in a graphical perturbation series, and the leading order is
expressed as a relative density functional with the aid of a sequence of redun-
dant fields under whose variation the thermodynamic potential—here the excess
grand potential—is stationary. Various reduction methods are suggested to
compress the set of redundant fields of this overcomplete description.

KEY WORDS: Homopolymer; classical chain; thermal equilibrium; relative
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1. INTRODUCTION

The theory of externally forced and hence non-uniform simple classical
fluids in thermal equilibrium has reached a respectable level of maturity. (1)

Complex molecular fluids, with their attendant explosion of phenomenol-
ogy, are of course a different story, and it is certainly necessary to specify
the unique characteristics of the class of systems under investigation. In this
discussion, we will have in mind the class of linear chain polymers, so
describable at a suitable level of resolution. In fact, we will focus on single
polymers, as an entree to the general field. Of course, one knows that under
many circumstances, the distinction between interacting long chains and
the self-interaction of a very long chain becomes blurred, so that our
restriction is not quite as severe as it appears at first sight. At any rate, the
number of descriptive parameters available for a long macromolecule is



enormous, and so we will focus even further, restricting our attention to
homopolymers with symmetric monomeric interactions, i.e., no molecular
directional sense.

At a primitive level, imagining only next neighbor interactions, our
system is equivalent to a one-dimensional lattice of monomers whose spe-
cification (read ‘‘degrees of freedom’’) include such as spatial location. The
general situation of this kind (with asymmetric interactions as well) has
been studied, (2, 3) although mainly in the context of spatially asymptotically
vanishing unit-unit interactions, and we will start in essence by transcribing
a portion of this study to the case of binding (asymptotically infinite)
interactions, involving an overcomplete representation which has served as
a powerful tool in the past. (4) However, our major interest lies in the realis-
tic situation in which, in addition to the binding of next neighbors, one also
has interaction between any two monomers, depending on their physical
proximity rather than their ordinal distance along the chain. We will do
this by extending the traditional Mayer diagram expansion (5) to the case of
a permanent backbone coupling the monomeric units, and at the moment
carry out the analysis only to low order in the pair interaction strength,
suitably defined. This, it develops, is itself a non-trivial undertaking.

2. BACKBONE STATISTICS

We have in mind, as basic structure, an ordered chain of N identical
units, and we designate the set of degrees of freedom of unit j simply by
(j), representing, e.g., (rj, hj, fj), the corresponding volume element by dj.
An externally specified unit location will usually be denoted by r. Imagin-
ing a grand ensemble with monomer number controlled by chemical
potential m, we impose an external potential u(j), or local chemical poten-
tial m(j)=m−u(j), as well as a symmetric next neighbor interaction
f(j, j+1), where fQ. as |rj |Q.. The Boltzmann factors attached to
such a system in thermal equilibrium at reciprocal temperature b will then
be

z(j)=exp bm(j)

Oj| w |j+1P=exp−bf(j, j+1),
(2.1)

and we will interpret w as a matrix, z as a diagonal matrix with diagonal
elements z(j): Oj| z |jŒP=z(j) d(j, jŒ). Since we are considering only one
polymer, its concentration would vanish in an unbounded space, and so
we implicitly assume that u(j) is a confining potential, e.g., u(r)Q. fast
enough as |r|Q.. (6)
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Our system is not invariant under any permutation of monomer
indices (aside from a complete reversal), and so the grand partition func-
tion is taken as

X=1+F z(1) d1+· · ·

+F · · ·F z(1)O1| w |2P z(2)O2| w |3P · · · z(N) d1 · · · dN+· · ·

=1+O1| z(I−wz)−1 |1P, (2.2)

where 1 is the vector of all 1’s. It follows that in obvious notation, the
monomer density is given by

n(r)/z(r)=(1/X) dX/dz(r)

=O1| (I−zw)−1 |rPOr| (I−wz)−1 |1P/X, (2.3)

or defining

k(r)=Or| (I−wz)−1 |1P/X1/2 (2.4)

and taking account of the symmetry of w, that

n(r)/z(r)=k(r)2, (2.5)

as well as

X=1+X1/2O1| z |kP. (2.6)

There is the tacit assumption in (2.2)–(2.4) that I−wz is not singular, since
this would in a finite system correspond to a condensation of the monomers.

The crucial relation (2.4) is certainly simple enough, but for arbitrary z
is not much more explicitly amenable to solution than the inverse of an
arbitrary matrix. It has the advantage of producing a one-point function,
and we don’t want to lose this. A convenient way to put the structure in
nominal closed form is by adopting an overcomplete description, (4) i.e., for
the system defined by w, represent its state by both z and k, and X too,
although they are hardly independent. In detail, we write (2.4) as

k−wzk=X−1/2 1, (2.7)

Homopolymers with Intrachain Interactions 359



modify this to (z−zwz) k−X−1/2 z1=0, and observe that the latter may be
written as

d/dk(r)|z, X [
1
2Ok| z−zwz |kP−O1| z |kP]/X1/2=0. (2.8)

But also

d

dz(r)
:
k, X

51
2
Ok| z−zwz |kP−X−1/2O1| z |kP6

=
1
2
k(r)2−k(r)Or| wz |kP−k(r)/X1/2 (2.9)

which by virtue of (2.7) reduces to − 12 k(r)
2. Thus we recognize that

if bW=Ok| z−zw |kP−2X−1/2O1| z |kP+g(X)

then dbW/dk(r)|z, X=0

dbW/dz(r)|k, X=−n(r)/z(r). (2.10)

Since the grand potential W=− 1
b
ln X can be defined by the property

that

dbW=−F (n(r)/z(r)) dz(r) dr, (2.11)

it follows that (2.10) will indeed represent bW if we can guarantee that

“bW/“X|z, k=0. (2.12)

This requires that 0=gŒ(X)+O1| z |kP/X3/2=gŒ(X)+[(X−1)/X1/2]/X3/2,
or g(X)=−1/X− ln X (to within an additive constant) and hence that

bW=Ok| z−zwz |kP−2X−1/2O1| z |kP−1/X− ln X. (2.13)

The stationarity of bW with respect to k and X has resolved its over-
completeness.

The overcompleteness of (2.13) is actually more than absolutely
necessary, but validating this remark requires a change of viewpoint. The
quantity

v(r) — n(r)/z(r) (2.14)
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which, as the ratio of density and ideal gas density, we may refer to as
relative density is (as in (2.3)) conjugate to z(r) with bW as appropriate
thermodynamic potential. Let us now go from a {z(r)} control description
to a {v(r)} description. (3) This requires expressing z(r) in terms of {v(r)}
and Legendre transforming to

bW+F v(r) z(r) dr=bW+F n(r) dr

— bWex,

(2.15)

the excess (over ideal gas) grand potential. Now of course, we have

dbWex=F z(r) dv(r) dr, (2.16)

so that dbWex/dv(r)=z(r), while dbWex/dk(r)=0, dbWex/“X=0. An
equivalent description is that

dWex=−F n(r) dmex(r) dr, (2.17)

where mex(r)=m(r)−(1/b) n(r).
From (2.9), we have v(r)=−k(r)2+2k(r)(wzk(r)+X−1/2), so that

z(r) k(r)=
1
2
w−1 1 v(r)

k(r)
+k(r)−2X−1/22 . (2.18)

Substituting into (2.15), written via (2.13) as

bWex=Ok| z−wz |kP−1/X− ln X (2.19)

yields

bWex=
1
4
7 v
k
+k−2X−1/21 : w−1 : v

k
+k−2 X−1/2 18−1/X− ln X.

(2.20)

But then dbWex/dk=0 tells us that −v/k2+1=0, so k=v1/2, leading to
the final result

bWex=Ov1/2−X−1/21| w−1 |v1/2−X−1/21P−1/X− ln X. (2.21)

As a matter of fact, X is readily eliminated from (2.21) by solving
“bWex/“X=0 and substituting, but we will retain the simpler form (2.21).
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3. LEADING ORDER PAIR INTERACTION

The grand partition function (2.2) represents a system with only next
neighbor forces. However, forces −Nf2 that are physically short range can
couple sites that are ordinarily far apart on the chain, giving rise to much
of the interesting phenomenology associated with the system. We will now
append such pair forces in a perturbative fashion, modeling our treatment
after that of Mayer for imperfect fluids. We introduce the Mayer f-function

Oi| f |jP=e−bf2(i, j)−1, (3.1)

so that the grand partition function now reads

X=1+ C
N=1

F D
N

1
z(i) D

N−1

1
Oi| w |i+1P D

1 [ i < j [N
(1+Oi| f |jP) d1 · · · dN.

(3.2)

The expansion of (3.2) in products of the Oi| f |jP is easier to organize,
and harder to simplify, than that for the corresponding fluid, in which the
backbone <N−1

1 Oi| w |i+1P is missing. A typical term in the expansion has
the form <k z(k)<k Ok| w |k+1P<(i, j) ¥ G Oi| f |jP, where the graph G
refers only to f-links and denotes an ordered set (e.g., lexicographically
ordered) of ordered f-links (i < j), with vertices imagined as ordered
integers on the real axis. By a connected graph G … Gc in this context we
will mean a graph for which no vertex exists that divides G into two non-
overlapping (but perhaps touching) left and right subgraphs. Now define
Oi| C |jP by summing up the contributions of connected graphs with left
vertex i and right vertex j > i, in the sense that

Oi| C |jP= C
G … Gc

F D
j−1

k=i+1
z(k) D

j−1

k=1
Ok| w |k+1P D

(k, a) ¥ G
Ok| f |aP D

j−1

k=i+1
dk.
(3.3)

Here Gc includes the degenerate case O1| w |zP with no f-link at all. Equa-
tion (3.2) then clearly decomposes into

X=1+F z(1) d1+F z(1)O1| C |2P z(2) d1 d2

+F z(1)O1| C |2P z(2)O2| C |3P z(3) d1 d2 d3+· · ·

=1/O1| z(I−Cz)−1 |1P. (3.4)
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In this study, we will confine our attention to the beginning of the
expansion of O1| C |2P in f-links, which will involve only a minor diagram
resummation. There are further classes of diagrams that yield easily in
principle and Dyson-type relations that systematize the procedure; these
will be reported in the future. For the present, we proceed only through
first order terms in f, analogous to stopping at second virial order in the
fluid case. (5) To this order, amounting to retaining only subchains bound
by single arbitrary-neighbor interactions:

O1| C |2P=O1| w |2P+O1| f |2P(O1| w |2P+F O1| w |3P z(3)O3| w |2P d3

+F O1| w |3P z(3)O3| w |4P z(4)O4| w |2P d3 d4+· · · )

=O1| w |2P+O1| f |2PO1| w(I−zw)−1 |2P, (3.5)

so that, using the convention

O1| aNb |2P=O1| a |2PO1| b |2P, (3.6)

we have

X=1+O1| z(I−[w+fNw(I−zw)−1] z)−1 |1P. (3.7)

One can also restrict f to non-next neighbor interactions, which slightly
changes the structure of (3.5).

Technically, the fNg term in (3.5) breaks the simple connectedness of
the path from 1 to 2, and hence its representation as a matrix product. It is
therefore convenient to represent O1| f |2P, highly non-uniquely, in the
bilinear form

O1| f |2P=C
a

qg
a (1) fa qa(2), (3.8)

where a must cover the range of f but is otherwise unrestricted. The sym-
metry of O1| f |2P tells us that

O1| f |2P=C
a

qa(1) fa q
g
a (2), (3.9)

as well, and the reality of O1| f |2P that fa may be taken as real. If we
introduce the diagonal matrix

O1| qa |2P — qa(2) d(1, 2), (3.10)
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then

fNg=C
a

fa q
+
a gqa, (3.11)

so that

I−Cz=I−wz−C
a

faq
+
a (I−wz)

−1 wzqa, (3.12)

and

X=1+O1| z 1I−wz−C
a

faq
+
a (I−wz)

−1 wzqa 2
−1

|1P. (3.13)

Using the general

dA−1=−A−1 dA A−1, (3.14)

as we have done before, and threading through the operation d/dz(r), we
therefore have the extended profile relation

n(r)/z(r)=X−1 dX/dz(r)

=X−1[O1| (I−zC)−1 |rPOr| (I−Cz)−1 |1P

+C
a

faO1| (I−zC)−1 q
+
a zw(I−zw)

−1 |rP

×Or| wz(I−wz)−1 qa(I−Cz)−1 |1P] (3.15)

4. OVERCOMPLETE FUNCTIONAL

Again, the notations (I−zw)−1 and (I−zC)−1 conceal our inability to
deal explicitly with arbitrary z, and again, an overcomplete representation
offers an avenue of relative escape. We follow the procedure of Section 2.
Define

k=X−1/2(I−Cz)−1 1

ka=(I−wz)−1 wzqak,
(4.1)
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so that

n(r)/z(r)=k(r)2+C
a

fak
g
a (r) ka(r). (4.2)

Now

ka−wzka=wzqak

k−wzk−C
a

faq
+
a ka=X

−1/21.
(4.3)

fa is real, and so, taking the real part of the second relation, we rewrite
(4.3) as

(w−1−z) ka−zqak=0

2z(I−wz) k−C
a

fa(zq
+
a ka+zqak

g
a )−2X

−1/2z1=0
(4.4)

Eqs. (4.4) are in fact equivalent to (4.3), as is readily verified by solving for
k and comparing with (4.1) and (3.12). In terms of the functional (the
hermitian scalar product is now implicit)

L=Ok| z−zwz |kP−2X−1/2O1| z |k|P

−C
a

faOk| z |qak
g
a+q

+
a kaP+C

a

faOka | (w−1−z) |kaP, (4.5)

we see that

dL/dkg
a (r)|z, k, X=0, dL/dka(r)|z, k, X=0,

dL/dk(r)|z, {ka}, X=0
(4.6)

The functional L is very close to the desired generating potential. We
first observe that

dL/dz(r)|k, {ka}, X=k(r)
2−2k(r) wzk(r)−2X−1/2k(r)

−C
a

fak(r)(qak
g
a+q

+
a ka)(r)−C

a

fak
g
a (r) ka(r), (4.7)
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which by virtue of the second of (4.3) and its conjugate reduces precisely to
−k(r)2−;a fak

g
a (r) ka(r) and hence to −n(r)/z(r). In other words, we

have dL|X=−> n(r)/z(r) dz(r) dr. Since “L/“X — X−3/2 > z(r) k(r) dr=
(X−1)/X2, as in the case of Section 2, we conclude that

bW[z, k, {ka}, X]=L− ln X−1/X. (4.8)

For potential reduction of the overcompleteness of (4.8), we again
switch from a z to a v=n/z representation. This requires

bWex=L−F z(r)
dL

dz(r)
dr− ln X−1/X

=Ok| zwz |kP+C
a

faOka | w−1 |kaP− ln X−1/X. (4.9)

But (4.7), in the form

v(r)=2k(r) wzk(r)+C fak
g
a (r) ka(r)

−k(r)2+C fak(r)[qak
g
a (r)+q

+
a ka(r)]+2X−1/2 k(r), (4.10)

allows us to eliminate z in favor of v, resulting in

bWex=C faOka | w−1 |kaP− ln X−1/X

+
1
4
7v−; fak

g
aka

k
+k−2X−1/2 B −C fa(qak

g
a+q

+
a ka) |w

−1|

×
v−; fak

g
aka

k
+k−2X−1/2 B −C fa(qak

g
a+q

+
a ka)8 (4.11)

Elimination of k(r) from (4.11) is again routine. From dWex/dk(r)=0, we
have 1− v

k2
+; fa

kga ka

k2
=0, precisely as in (4.2). Thus, k=(v−; fak

g
aka)

1/2

and we can therefore rewrite (4.11) as

bWex=−ln X−1/X+C faOka | w−1 | kaP+OY| w−1 |YP,

where Y=1v−C fak
g
aka 2

1/2

−X−1/2−
1
2
C fa(qak

g
a+q

+
a ka),

(4.12)
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an evident generalization of (2.21). A more compact form, in terms of an
indefinite (real) metric A·B=; faAaBa, is

bWex=−ln X−1/X+F w−1(12) kg(1) ·k(2) d1 d2+OY| w−1 |YP

where Y=(v−kg ·k)1/2−X−1/2−Re kg ·q and qg(1) ·q(2)=O1| f |2P.
(4.13)

5. CONCLUDING REMARKS

The expression (4.12), and its variational consequences, constitute the
formulation desired. However, there are two obvious complications. First
is that there are an enormous number of functions {ka} to deal with—
although the expression (4.13) suggests several possibilities for doing so.
Second, the actual form of (4.12) is not unique, since only the relation (3.8)
among the {fa} and {qa} has to be satisfied. A variational ansatz such as
ka=qa f, valid according to (4.1) if each qa is slowly varying, with a
common f, addresses both of these problems.

In this approximation (choosing f as real), (4.12) is replaced by the
much simpler

bWex=−ln X−1/X+Of| fLw−1 |fP+OY| w−1 |YP

where Y=(v−gf2)1/2−gf−X−1/2 and g=Or| f |rP, (5.1)

very much in the mold of (2.13). The consequences of (5.1) have yet to be
delineated.

Summing up, our tacit objective has been to get a feeling for the
fashion in which analysis of polymer chains with long-range interactions,
ordinally speaking, might proceed, rather than developing systematic brute
force techniques for the purpose. We have focussed upon variational
approaches of the density functional type, with their obvious close associa-
tion with a thermodynamic viewpoint. This means that at most one-point
fields are legitimate intermediaries, and the ‘‘algebraic’’ problems are
related to this requirement. In particular, we found that even at the equiv-
alent of a second order virial correction with respect to non-neighbor pairs,
a whole set of one-point quantities is called for, which must thereafter be
reduced in some sequential fashion, of which we only examined leading
order. Nonetheless, the concepts we were forced to introduce are of much
greater applicability, and we are in the process of applying them to the case
of non-symmetric next-neighbor interactions (already considered in ref. 3)
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which in fact offers a formal avenue of entree to given heteropolymeric
ordering as well. The consequences will be reported in a future communi-
cation, in the context of a systematic diagram resummation of which only
leading order has been presented here. We are also in the process of
developing exactly solvable (but of course very special) models to serve as
analytic checks on suggested approximations, as well as a number of
strictly numerical comparisons.
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